\(\int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx\) [301]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 92 \[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\frac {\sqrt {-1+c x} \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}}-\frac {\sqrt {-1+c x} \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}} \]

[Out]

Chi((a+b*arccosh(c*x))/b)*cosh(a/b)*(c*x-1)^(1/2)/b/c^2/(-c*x+1)^(1/2)-Shi((a+b*arccosh(c*x))/b)*sinh(a/b)*(c*
x-1)^(1/2)/b/c^2/(-c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {5952, 3384, 3379, 3382} \[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\frac {\sqrt {c x-1} \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}}-\frac {\sqrt {c x-1} \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}} \]

[In]

Int[x/(Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])),x]

[Out]

(Sqrt[-1 + c*x]*Cosh[a/b]*CoshIntegral[(a + b*ArcCosh[c*x])/b])/(b*c^2*Sqrt[1 - c*x]) - (Sqrt[-1 + c*x]*Sinh[a
/b]*SinhIntegral[(a + b*ArcCosh[c*x])/b])/(b*c^2*Sqrt[1 - c*x])

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 5952

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^
(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2
, 0] && IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {-1+c x} \text {Subst}\left (\int \frac {\cosh \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b c^2 \sqrt {1-c x}} \\ & = \frac {\left (\sqrt {-1+c x} \cosh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b c^2 \sqrt {1-c x}}-\frac {\left (\sqrt {-1+c x} \sinh \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arccosh}(c x)\right )}{b c^2 \sqrt {1-c x}} \\ & = \frac {\sqrt {-1+c x} \cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}}-\frac {\sqrt {-1+c x} \sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a+b \text {arccosh}(c x)}{b}\right )}{b c^2 \sqrt {1-c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.88 \[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\frac {\sqrt {1-c^2 x^2} \left (-\cosh \left (\frac {a}{b}\right ) \text {Chi}\left (\frac {a}{b}+\text {arccosh}(c x)\right )+\sinh \left (\frac {a}{b}\right ) \text {Shi}\left (\frac {a}{b}+\text {arccosh}(c x)\right )\right )}{c^2 \sqrt {\frac {-1+c x}{1+c x}} (b+b c x)} \]

[In]

Integrate[x/(Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])),x]

[Out]

(Sqrt[1 - c^2*x^2]*(-(Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]]) + Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]]
))/(c^2*Sqrt[(-1 + c*x)/(1 + c*x)]*(b + b*c*x))

Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.26

method result size
default \(\frac {\sqrt {-c^{2} x^{2}+1}\, \left (\sqrt {c x -1}\, \sqrt {c x +1}\, c x +c^{2} x^{2}-1\right ) \left (\operatorname {Ei}_{1}\left (\operatorname {arccosh}\left (c x \right )+\frac {a}{b}\right ) {\mathrm e}^{\frac {-b \,\operatorname {arccosh}\left (c x \right )+a}{b}}+\operatorname {Ei}_{1}\left (-\operatorname {arccosh}\left (c x \right )-\frac {a}{b}\right ) {\mathrm e}^{-\frac {a +b \,\operatorname {arccosh}\left (c x \right )}{b}}\right )}{2 b \left (c^{2} x^{2}-1\right ) c^{2}}\) \(116\)

[In]

int(x/(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(-c^2*x^2+1)^(1/2)*((c*x-1)^(1/2)*(c*x+1)^(1/2)*c*x+c^2*x^2-1)*(Ei(1,arccosh(c*x)+a/b)*exp((-b*arccosh(c*x
)+a)/b)+Ei(1,-arccosh(c*x)-a/b)*exp(-(a+b*arccosh(c*x))/b))/b/(c^2*x^2-1)/c^2

Fricas [F]

\[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\int { \frac {x}{\sqrt {-c^{2} x^{2} + 1} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(x/(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*x/(a*c^2*x^2 + (b*c^2*x^2 - b)*arccosh(c*x) - a), x)

Sympy [F]

\[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\int \frac {x}{\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}\, dx \]

[In]

integrate(x/(a+b*acosh(c*x))/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x/(sqrt(-(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))), x)

Maxima [F]

\[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\int { \frac {x}{\sqrt {-c^{2} x^{2} + 1} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(x/(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(-c^2*x^2 + 1)*(b*arccosh(c*x) + a)), x)

Giac [F]

\[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\int { \frac {x}{\sqrt {-c^{2} x^{2} + 1} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}} \,d x } \]

[In]

integrate(x/(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(-c^2*x^2 + 1)*(b*arccosh(c*x) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \text {arccosh}(c x))} \, dx=\int \frac {x}{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {1-c^2\,x^2}} \,d x \]

[In]

int(x/((a + b*acosh(c*x))*(1 - c^2*x^2)^(1/2)),x)

[Out]

int(x/((a + b*acosh(c*x))*(1 - c^2*x^2)^(1/2)), x)